2,919 research outputs found

    Transmission and Reflection in the Stadium Billiard: Time-dependent asymmetric transport

    Full text link
    We investigate the transmission and reflection survival probabilities for the chaotic stadium billiard with two holes placed asymmetrically. Classically, these distributions are shown to have algebraic or exponential decays depending on the choice of injecting hole and exact expressions are given for the first time and confirmed numerically. As there is no reported quantum theoretical or experimental analogue we propose a model for experimental observation of the asymmetric transport using semiconductor nano-structures and comment on the relevant quantum time-scales.Comment: 4 pages, 4 figure

    The dependence of intrinsic alignment of galaxies on wavelength using KiDS and GAMA

    Get PDF
    The outer regions of galaxies are more susceptible to the tidal interactions that lead to intrinsic alignments of galaxies. The resulting alignment signal may therefore depend on the passband if the colours of galaxies vary spatially. To quantify this, we measured the shapes of galaxies with spectroscopic redshifts from the GAMA survey using deep gri imaging data from the KiloDegree Survey. The performance of the moment-based shape measurement algorithm DEIMOS was assessed using dedicated image simulations, which showed that the ellipticities could be determined with an accuracy better than 1% in all bands. Additional tests for potential systematic errors did not reveal any issues. We measure a significant difference of the alignment signal between the g,r and i-band observations. This difference exceeds the amplitude of the linear alignment model on scales below 2 Mpc/h. Separating the sample into central/satellite and red/blue galaxies, we find that that the difference is dominated by red satellite galaxies.Comment: 16 pages, 13 figures, accepted, to appear in A&

    Comparative assessment of young learners' foreign language competence in three Eastern European countries

    Get PDF
    This paper concerns teacher practices in, and beliefs about, the assessment of young learners' progress in English in three Eastern European countries (Slovenia, Croatia, and the Czech Republic). The central part of the paper focuses on an international project involving empirical research into assessment of young learners' foreign language competence in Slovenia, Croatia and the Czech Republic. With the help of an adapted questionnaire, we collected data from a non-random sample of primary and foreign language teachers who teach foreign languages at the primary level in these countries. The research shows that English as a foreign language is taught mostly by young teachers either primary specialists or foreign language teachers. These teachers most frequently use oral assessment/interviews or self-developed tests. Other more authentic types of assessment, such as language portfolios, are rarely used. The teachers most frequently assess speaking and listening skills, and they use assessment involving vocabulary the most frequently of all. However, there are significant differences in practice among the three countries

    A virtual earth model of the dementias in China

    Full text link
    © 2017 International Medical Informatics Association (IMIA) and IOS Press. This developmental project was undertaken to explore how applying spatial science analysis and visualisation methods might inform societies undergoing significant structural and demographic change. China is rapidly transitioning to an aged society. It already exceeds all other countries in its population aged 65 years and over. Dementia is closely correlated with ageing and intersects with a variety of physical and cognitive disabilities. Information dashboards are a growing part of health and social policy data environments. These visual data applications increasingly include mapping capabilities. In this paper, we explore the utility of a geographic modelling approach to exploring the complex nature of population ageing and the dementias in China

    Luminous red galaxies in the Kilo Degree Survey: selection with broad-band photometry and weak lensing measurements

    Get PDF
    We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of 0.1<z<0.70.1<z<0.7 over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of σz∌0.014(1+z)\sigma_z \sim 0.014 (1+z) that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to z∌0.7z \sim 0.7

    The halo model as a versatile tool to predict intrinsic alignments

    Get PDF
    Intrinsic alignments (IAs) of galaxies are an important contaminant for cosmic shear studies, but the modelling is complicated by the dependence of the signal on the source galaxy sample. In this paper, we use the halo model formalism to capture this diversity and examine its implications for Stage-III and Stage-IV cosmic shear surveys. We account for the different IA signatures at large and small scales, as well as for the different contributions from central/satellite and red/blue galaxies, and we use realistic mocks to account for the characteristics of the galaxy populations as a function of redshift. We inform our model using the most recent observational findings: we include a luminosity dependence at both large and small scales and a radial dependence of the signal within the halo. We predict the impact of the total IA signal on the lensing angular power spectra, including the current uncertainties from the IA best-fits to illustrate the range of possible impact on the lensing signal: the lack of constraints for fainter galaxies is the main source of uncertainty for our predictions of the IA signal. We investigate how well effective models with limited degrees of freedom can account for the complexity of the IA signal. Although these lead to negligible biases for Stage-III surveys, we find that, for Stage-IV surveys, it is essential to at least include an additional parameter to capture the redshift dependence

    Comments on Supersymmetry Algebra and Contact Term in Matrix String Theory

    Get PDF
    Following hep-th/0309238 relating the matrix string theory to the light-cone superstring field theory, we write down two supercharges in the matrix string theory explicitly. After checking the supersymmetry algebra at the leading order, we proceed to discuss higher-order contact terms.Comment: 17 pages, no figures, v2: eq. (5.1) and related appendices corrected, v3: final version to appear in JHE

    Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities

    Full text link
    We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite temperature with nonzero R-charge densities, and in Non-Commutative gauge theory at finite temperature. The gluon scattering amplitude is defined as a light-like Wilson loop which lives at the horizon of the T-dual black holes of the backgrounds we consider. We study in detail a special amplitude, which corresponds to forward scattering of a low energy gluon off a high energy one. For this kinematic configuration in the considered backgrounds, we find the corresponding minimal surface which is directly related to the gluon scattering amplitude. We find that for increasing the chemical potential or the non-commutative parameter, the on-shell action corresponding to our Wilson loop in the T-dual space decreases. For all of our solutions the length of the short side of the Wilson loop is constrained by an upper bound which depends on the temperature, the R-charge density and the non-commutative parameter. Due to this constraint, in the limit of zeroth temperature our approach breaks down since the upper bound goes to zero, while by keeping the temperature finite and letting the chemical potential or the non-commutative parameter to approach to zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical computation for the non-commutative case
    • 

    corecore